The master formulae in QFT:

(1)DϕDϕexp{id4x(ϕMϕ+JM)}=NdetMexp(iJM1J)

where N is some normalization factor.

For fermions,

(2)DψDψexp{id4x(ψMψ)}=NdetM.

Some conventions. Metric:

gμν=diag{1,1,1,1},ϵ0123=1,

Fourier transform:

f(x)=dnk(2π)neipxf~(p),f~(p)=dxeipxf(x),

and δ-function:

(3)δ(n)(k)=1(2π)ndnxeikx.

The gauge Lie group G has an underlying Lie algebra g, whose generator satisfies

(4)[Ta,Tb]=ifabcTc

We require the generators in the fundamental representations to satisfy normalization condition

(5)Tr TaTb=12δab.

Gauge field is a g-valued field,

(6)Aμ=AμaTa,Tag.

The g-valued field strength is

(7)Fμν=μAννAμi[Aμ,Aν],

which in the language of differential forms is

(8)F=dAiAA.

Our convention for covariant derivative acting on a field in the fundamental representation is

(9)DμψμψiAμψ,

while acting on a field in the adjoint representation is

(10)Dμϕμϕi[Aμ,ϕ],

and

(11)[Dμ,Dν]ψ=iFμνψ,(12)[Dμ,Dν]ϕ=i[Fμν,ϕ],

where again ψ,ϕ are fields in the fundamental and adjoint representation respectively.


The gauge transformation for various fields are

  • gauge field: AμΩ(Aμ+iμ)Ω,Ω=eiωiTiSU(N)
  • fundamental scalar field: ϕΩϕ
  • fundamental spinor field: ψΩψ
  • adjoint scalar field: ϕΩϕΩ

The non-abelian, gauge dependent magnetic field (chromo-magnetic field) is

(13)Bi12ϵijkFjk

and the non-abelian electric field

(14)EiF0i

The Weyl (chiral) basis of gamma matrices is

(15)γμ=(0σμσ¯μ0),σ¯μ(1,σi).

Going to the Euclidean spacetime:

(16)tiτ

Some notations concerning SUSY.

(17)ημν=diag1,1,1,1,(18)σaa˙μ=(1,σi)numerically,(19)σμa˙a=(1,σi)numerically,(20)(σμν)abi4(σ[μσν])ab,(21)(σμν)a˙b˙i4(σ¯[μσν])a˙b˙.

Under Lorentz transformation,

(22)ψaexp(i2ωμνσμν)abψb,ψ¯a˙exp(i2ωμνσ¯μν)a˙b˙ψ¯b˙.

The contraction works in a peculiar way. The metric is

(23)ϵab=σ2(i1)=(0110),ϵab=ϵab,ϵa˙b˙=ϵa˙b˙.

The metric acts from left on a field, and acts from right to a derivative,

(24)ϵabψb=ψa,aϵab=b.

The gamma matrices:

(25)γμ=(0σμσ¯μ0),(26)γ5=iγ0γ1γ2γ3. (27)χaχb=12ϵabχ2,χaχb=12ϵabχ2,(28)χ¯a˙χ¯b˙=12ϵa˙b˙χ¯2,χ¯a˙χ¯b˙=12ϵa˙b˙χ¯2.

(θσμθ¯)(θσνθ¯)=12ημνθ2θ¯2. (29)Aμ=12Aab˙σμb˙a,(30)Aab˙=Aμσμab˙,(31)Fab=Fμν(σμν)ab

Note that the complex conjugate reverses the order of Grassmann operators, and

(32)(a)=¯a˙.

The chiral field:

(33)xLxμiθσμθ¯,xRxμ+iθσμθ¯,(34)Da=ai(σμθ¯)aμ,D¯a˙=(Da)=¯a˙+i(θσμ)a˙μ.

The supergauge transformation:

(35)ΦeiqΛ(y,θ)Φ,(36)V(x,θ,θ¯)V(x,θ,θ¯)i(ΛΛ¯),

where the charge q is usually absorbed in the definition of the gauge field A. The gauge invariant combination is

Φ¯eVΦ. The Wess-Zumino supergauge greatly reduces the number of component fields of a real superfield:

V(x,θ,θ¯)=2θσμθ¯Aμ2iθ¯2(θλ)+2iθ2θ¯λ¯+θ2θ¯2D. The super-generalization of field strength is a left-chiral superfield, Wa18D¯2DaV, to derive it, go to {yμ,θ,θ} coordinates and note that

(37)D¯a˙¯a˙

and

(38)¯2θ¯2=4.